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1 Compactness of Sobolev Embeddings and Poincaré-Type
Inequalities

1.1 Compactness of embeddings of Hölder spaces into Hölder spaces

Last time we defined the notion of compact operators.

Definition 1.1. Let X,Y be normed spaces, and let T : X → Y be linear. We say that
T is a compact operator if T (BX), the image of the unit ball in X, is compact in Y .
Equivalently, we may require that for all bounded {xn} ⊆ X, {Txn} has a convergent
subsequence.

The proof will resemble the proof of the Arzelà-Ascoli theorem.

Theorem 1.1 (Arzelà-Ascoli). Let K be a compact set and A ⊆ C(K). Suppose that

1. A is locally bounded, i.e. for any x ∈ K, there is an M(x) such that for all f ∈ A,
|f(x)| ≤M(x).

2. A is equicontinuous, i.e. for all ε > 0, there is a δ > 0 such that for all f ∈ A,

|x− y| < δ =⇒ |f(x)− f(y)| < ε, ∀x, y ∈ K.

Then A is compact.

There is a weaker notion of convergence in C(K), pointwise convergence. The link
between pointwise and uniform convergence is given by the equicontinuity assumption. In
short, we use extra regularity to help us prove compactness.

Theorem 1.2 (Compactness of C0,α(U) ⊆ C0,α′(U)). Let U be a bounded open subset
of Rd, and assume 0 < α′ < α < 1 (so that C0,α(U) ⊆ C0,α′(U)). The embedding
C0,α(U)→ C0,α′(U) is compact.

Here is a sketch of the proof.
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Proof.

(i) The first observation is to note that the embedding C0,α(U)→ C(U) is compact (this
is by Arzelà-Ascoli).

(ii) By (i), if {un} ⊆ C0,α(U) is bounded: ‖un}C0,α ≤ M , then there is a subsequence
unj such that {unj} is convergent in C(U) (to u∞). We claim that in fact,

‖unj → u∞‖C0,α′ (U) → 0.

The key idea here is interpolation. Because

‖v‖C0,α′ = ‖v‖L∞ + [v]C0,α′ ,

we need to show that
[v]C0,α′ ≤ ‖v‖L∞ [v]

α′/α
C0,α ,

where the α′/α exponent comes from dimensional analysis concerns. If we have this,
then

[unj − u∞]C0,α′ ≤ ‖unj − u∞‖1−α
′/α︸ ︷︷ ︸

→0 by (i)

[un − u∞]
α′/α
C0,α︸ ︷︷ ︸

bdd

.

To prove this inequality, write

|v(x)− v(y)|
|x− y|α′

≤ (|v(x)|+ |v(y)|)1−α′/α
(
|v(x)− v(y)|
|x− y|α′

)α′/α
.

Then take the sup over x, y ∈ U with x 6= y on both sides.

1.2 Rellich-Kondrachov compactness of embedding Sobolev spaces into
Lp spaces

Theorem 1.3 (Rellich-Kondrachov). Let d ≥ 2, and let U be a bounded domain in Rd with
C1 boundary ∂U . (Recall that if 1 ≤ p < d, we have the embedding W 1,p(U) → Lp

∗
(U),

where d
p∗ = d

p − 1.) Let 1 ≤ p < d, and let 1 ≤ q < p∗. Then the embedding W 1,p(U) →
Lq(U) is compact.

As in the discussion of Arzelà-Ascoli, we will approximate a bounded sequence by a
part which is compact and leverage some sort of uniform control. Here is a property of
mollifiers that will be useful for us: Recall that if v ∈ Lp(Rd) and ϕ ∈ C∞c (Rd) with∫
ϕ = 1, ϕε ∗ v → v in Lp(Rd). This is a qualitative statement that doesn’t tell us how

fast this converges with respect to ε. However, if we have more information, we can rectify
this.
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Lemma 1.1 (Accelerated convergence of modifiers). Let 1 ≤ p < ∞, and suppose v ∈
W k,p. Choose ϕ ∈ C∞c (Rd) such that

∫
ϕdx = 1 and

∫
xαϕdx = 0 for all 1 ≤ |α| < k.1

Then
‖ϕε ∗ v − v‖Lp ≤ Cεk‖∂(k)v‖Lp .

Here is the proof of this lemma when k = 2. The argument is the same for other values
of k.

Proof. First, write∫
ϕε(y)v(x− y) dy − v(x)︸︷︷︸

=
∫
ϕε(y)v(x) dy

=

∫
ϕε(y)(v(x− y)− v(x)) dy.

Here, we should think of |y| . ε. To quantify the convergence of the v part, we Taylor
expand in y. We will be using the integral form of the Taylor expansion with remain-
der.2Write ∫ 1

0

d

ds
v(x− sy) ds = −

∫
d

ds
(1− s) d

ds
v(x− sy) dx

=
d

ds
v(x− sy)

∣∣∣∣
s=0

+

∫ 1

0
(1− s) d

2

ds2
v(x− sy) ds.

The first term gves y · ∇v(x), and the second term gives yiyj
∫ 1
0 (1 − s)∂i∂jv(x − sy) ds.

The contribution of the first term is 0 by the moment condition, and we are left with the
remainder, which we can control. In all, we get∣∣∣∣∫ ϕε(y)v(x− y) dy − v(x)

∣∣∣∣ ≤ ∫ |ϕε(y)||y|2
∫ 1

0
|∂2ϕ(x− sy)| ds dy.

This tells us that

‖·‖Lp ≤ ‖∂
2v‖Lp

∫
|ϕε(y)| |y|2︸︷︷︸

.ε2

dy

. ε2‖∂2v‖Lp .

Now let’s prove the theorem.

Proof.

1The conditions
∫
xαϕdx = 0 are called moment conditions.

2Sung-Jin Oh says that this is the only version of Taylor’s theorem you should ever use; this is a lesson
he learned later than he would have liked.
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Step 1: Reduce to the compactness of W 1,p(U) → Lp(U). This is sufficient because
of the following two cases:

Case 1: W 1,p → Lq(U) with 1 ≤ q ≤ p. In this case, if U is bounded, then
Hölder gives ‖v‖Lq(U) ≤ |U |1/q−1/p‖v‖Lp , and we already have control in Lp.

Case 2: W 1,p → Lq(U) with p < q < p∗. Again by Hölder, we have

‖v‖Lq ≤ ‖v‖θLp‖v‖1−θLp∗
,

where d
q = d

pθ+ d
p∗ (1−θ). The condition that p < q < p∗ tells us that 0 < θ < 1.

The Lp term goes ti 0 by compactness of W 1,p → Cp, and the Lp
∗

term goes to
0 by the Sobolev inequality.

Step 2: Prove compactness of W 1,p(U) → Lp(U): Given {un} ⊆ W 1,p(U) with
‖un‖W 1,p(U) ≤ M < ∞, by extension, we can find a sequence of extensions ũn of un
defined on Rd such that

‖ũn‖W 1,p(Rd) ≤ C‖un‖W 1,p(U) ≤ CM

and supp ũn ⊆ V , where V is a bounded open set containing U . It suffices to find
a subsequence of ũn that converges in Lp. Introduce ϕ ∈ C∞c (Rd) with

∫
ϕdx = 1,

and write
ũn = ϕ ∗ ũn︸ ︷︷ ︸

vnε

+ (ũn − ϕ ∗ ũn)︸ ︷︷ ︸
en,ε

.

By the lemma,
‖enε‖Lp ≤ CεM,

independent of n. Also, note that using Hölder’s inequality (specifically using that∫
|ũn(x− y)ϕε(x− y)| dy ≤ ‖ũn‖Lp‖ϕε‖Lp′ ),

‖vn,ε‖L∞ + ‖∇vn,ε‖L∞ ≤ Cε.

For each `, there exists a subsequence ũn` such that

‖en`,ε‖ < 2−`

and such that
‖vn`′ ,ε − vn`′ ,ε‖Lp < 2−` ∀`′, `′′ > `.

(The second statement is by Arzelà-Ascoli. Now use a diagonal argument to extract
a convergent subsubsequence; i.e. apply this recursively to subsequences and then
extract a diagonal subsequence that converges.
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1.3 Poicaré-type inequalities

A Poincaré-type inequality refers to any inequality that controls u in terms of informa-
tion on Du, along with some additional condition to fix the ambiguity.

Theorem 1.4 (Poincaré inequality). Let 1 ≤ p < ∞, and let U be a bounded domain in
Rd with C1 boundary ∂U . For u ∈W 1,p(U) with

∫
U u dx = 0,

‖u‖Lp ≤ CU‖Du‖Lp .

Remark 1.1. For p = 1, the proof requires a bit more effort than what we will say.

Here is a proof from Evans’ book. This is a typical application of Rellich-Kondrachov
compactness.

Proof. We argue by contradiction. For contradiction, assume that for each n ≥ 1, there
exists un ∈W 1,p(U) such that

∫
un = 0 and

‖un‖Lp ≥ n‖∇un‖Lp .

By normalization, we may assume that ‖un‖Lp = 1. Then it follows that

‖∇un‖Lp ≤
1

n
.

In particular, this means that ‖un‖W 1,p(U) ≤ 2, and by Rellich-Kondrachov compactness,
there is a subsequence such that un → u∞ in Lp. Moreover, 1 = ‖un‖Lp → ‖u∞‖Lp .
Since Dun → Du weakly in Lp, we must have Du = 0. That is, u is constant on U . But
0 =

∫
un →

∫
u, which tells us that u = 0 on U . However, this contradicts ‖u‖Lp = 1.

In most applications of this compactness arguments, u will satisfy linear relations that
imply that it equals 0. Then you can show that it’s not 0.

Remark 1.2. Another popular form of the Poincaré inequality is∥∥∥∥u− 1

|U |
u

∥∥∥∥
Lp
≤ CU‖Du‖Lp .

Here are some other examples of Poincaré-type inequalities:

Theorem 1.5 (Friedrich inequality). Let 1 ≤ p < ∞, and let U be a bounded domain in
Rd with C1 boundary ∂U . For u ∈W 1,p(U) with u|∂U = 0,

‖u‖Lp ≤ CU‖Du‖Lp .

We can prove this in the same way using compactness. On the other hand, we can also
prove this just from the Sobolev inequality for W 1,p

0 (U).
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Theorem 1.6 (Hardy’s inequality).

(i) If u ∈W 1,p(U) and u|∂U = 0, then∥∥∥∥ 1

dist(·, ∂U)
u

∥∥∥∥
Lp(U)

≤ C‖Du‖Lp(U).

(ii) If u ∈W 1,p(Rd) with p < d, then∥∥∥∥ 1

|x|
u

∥∥∥∥
Lp
≤ C‖Du‖Lp .

We can view Hardy’s inequality as a refinement of Friedrich’s inequality. We will discuss
the proof next time.
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